
Local, instructor-led live Machine Learning (ML) training courses demonstrate through hands-on practice how to apply machine learning techniques and tools for solving real-world problems in various industries. NobleProg ML courses cover different programming languages and frameworks, including Python, R language and Matlab. Machine Learning courses are offered for a number of industry applications, including Finance, Banking and Insurance and cover the fundamentals of Machine Learning as well as more advanced approaches such as Deep Learning.
Machine Learning training is available as "onsite live training" or "remote live training". Onsite live Machine Learning trainings in Saudi Arabia can be carried out locally on customer premises or in NobleProg corporate training centers. Remote live training is carried out by way of an interactive, remote desktop.
NobleProg -- Your Local Training Provider
Testimonials
It was very interactive and more relaxed and informal than expected. We covered lots of topics in the time and the trainer was always receptive to talking more in detail or more generally about the topics and how they were related. I feel the training has given me the tools to continue learning as opposed to it being a one off session where learning stops once you've finished which is very important given the scale and complexity of the topic.
Jonathan Blease
Course: Artificial Neural Networks, Machine Learning, Deep Thinking
The trainer was so knowledgeable and included areas I was interested in.
Mohamed Salama
Course: Data Mining & Machine Learning with R
The topic is very interesting.
Wojciech Baranowski
Course: Introduction to Deep Learning
Trainers theoretical knowledge and willingness to solve the problems with the participants after the training.
Grzegorz Mianowski
Course: Introduction to Deep Learning
Topic. Very interesting!.
Piotr
Course: Introduction to Deep Learning
Exercises after each topic were really helpful, despite there were too complicated at the end. In general, the presented material was very interesting and involving! Exercises with image recognition were great.
Dolby Poland Sp. z o.o.
Course: Introduction to Deep Learning
I think that if training would be done in polish it would allow the trainer to share his knowledge more efficient.
Radek
Course: Introduction to Deep Learning
The global overview of deep learning.
Bruno Charbonnier
Course: Advanced Deep Learning
The exercises are sufficiently practical and do not need high knowledge in Python to be done.
Alexandre GIRARD
Course: Advanced Deep Learning
Doing exercises on real examples using Eras. Italy totally understood our expectations about this training.
Paul Kassis
Course: Advanced Deep Learning
The subject. It seemed interesting, but I left knowing not much more than before.
Radoslaw Labedzki
Course: Introduction to Deep Learning
I liked that this course had very interesting subject.
Wojciech Wilk
Course: Introduction to Deep Learning
I really appreciated the crystal clear answers of Chris to our questions.
Léo Dubus
Course: Neural Networks Fundamentals using TensorFlow as Example
I generally enjoyed the knowledgeable trainer.
Sridhar Voorakkara
Course: Neural Networks Fundamentals using TensorFlow as Example
I was amazed at the standard of this class - I would say that it was university standard.
David Relihan
Course: Neural Networks Fundamentals using TensorFlow as Example
Very good all round overview. Good background into why Tensorflow operates as it does.
Kieran Conboy
Course: Neural Networks Fundamentals using TensorFlow as Example
I liked the opportunities to ask questions and get more in depth explanations of the theory.
Sharon Ruane
Course: Neural Networks Fundamentals using TensorFlow as Example
We have gotten a lot more insight in to the subject matter. Some nice discussion were made with some real subjects within our company.
Sebastiaan Holman
Course: Machine Learning and Deep Learning
The training provided the right foundation that allows us to further to expand on, by showing how theory and practice go hand in hand. It actually got me more interested in the subject than I was before.
Jean-Paul van Tillo
Course: Machine Learning and Deep Learning
I really enjoyed the coverage and depth of topics.
Anirban Basu
Course: Machine Learning and Deep Learning
The deep knowledge of the trainer about the topic.
Sebastian Görg
Course: Introduction to Deep Learning
Very updated approach or CPI (tensor flow, era, learn) to do machine learning.
Paul Lee
Course: TensorFlow for Image Recognition
Very flexible.
Frank Ueltzhöffer
Course: Artificial Neural Networks, Machine Learning and Deep Thinking
I generally enjoyed the flexibility.
Werner Philipp
Course: Artificial Neural Networks, Machine Learning and Deep Thinking
Given outlook of the technology: what technology/process might become more important in the future; see, what the technology can be used for.
Commerzbank AG
Course: Neural Networks Fundamentals using TensorFlow as Example
I was benefit from topic selection. Style of training. Practice orientation.
Commerzbank AG
Course: Neural Networks Fundamentals using TensorFlow as Example
In-depth coverage of machine learning topics, particularly neural networks. Demystified a lot of the topic.
Sacha Nandlall
Course: Python for Advanced Machine Learning
I genuinely liked excercises
L M ERICSSON LIMITED
Course: Machine Learning
I liked the lab exercises.
Marcell Lorant - L M ERICSSON LIMITED
Course: Machine Learning
The Jupyter notebook form, in which the training material is available
L M ERICSSON LIMITED
Course: Machine Learning
There were many exercises and interesting topics.
L M ERICSSON LIMITED
Course: Machine Learning
Some great lab exercises analyzed and explained by the trainer in depth (e.g. covariants in linear regression, matching the real function)
L M ERICSSON LIMITED
Course: Machine Learning
It's just great that all material including the exercises is on the same page and then it gets updated on the fly. The solution is revealed at the end. Cool! Also, I do appreciate that Krzysztof took extra effort to understand our problems and suggested us possible techniques.
Attila Nagy - L M ERICSSON LIMITED
Course: Machine Learning
I was benefit from the passion to teach and focusing on making thing sensible.
Zaher Sharifi - GOSI
Course: Advanced Deep Learning
The informal exchanges we had during the lectures really helped me deepen my understanding of the subject
Explore
Course: Deep Reinforcement Learning with Python
It is showing many methods with pre prepared scripts- very nicely prepared materials & easy to traceback
Kamila Begej - GE Medical Systems Polska Sp. Zoo
Course: Machine Learning – Data science
I like that training was focused on examples and coding. I thought that it is impossible to pack so much content into three days of training, but I was wrong. Training covered many topics and everything was done in a very detailed manner (especially tuning of model's parameters - I didn't expected that there will be a time for this and I was gratly surprised).
Bartosz Rosiek - GE Medical Systems Polska Sp. Zoo
Course: Machine Learning – Data science
I like that it focuses more on the how-to of the different text summarization methods
Course: Text Summarization with Python
lots of information, all questions ansered, interesting examples
A1 Telekom Austria AG
Course: Deep Learning for Telecom (with Python)
The trainer was a professional in the subject field and related theory with application excellently
Fahad Malalla - Tatweer Petroleum
Course: Applied AI from Scratch in Python
I started with close to zero knowledge, and by the end I was able to build and train my own networks.
Huawei Technologies Duesseldorf GmbH
Course: TensorFlow for Image Recognition
Ewa has a passion for the subject and a huge wealth of knowledge. She impressed all of us with her knowledge and kept us all focused through the day.
Rock Solid Knowledge Ltd
Course: Machine Learning – Data science
Even with having to miss a day due to customer meetings, I feel I have a much clearer understanding of the processes and techniques used in Machine Learning and when I would use one approach over another. Our challenge now is to practice what we have learned and start to apply it to our problem domain
Richard Blewett - Rock Solid Knowledge Ltd
Course: Machine Learning – Data science
So much breadth and topics covered. I felt it was a huge subject to try and cover in 3 days - the trainer did what they could to cover everything almost exactly on time!
Rock Solid Knowledge Ltd
Course: Machine Learning – Data science
About face area.
中移物联网
Course: Deep Learning for NLP (Natural Language Processing)
I like that it focuses more on the how-to of the different text summarization methods
Course: Text Summarization with Python
Machine Learning Subcategories in Saudi Arabia
Machine Learning Course Outlines in Saudi Arabia
In this instructor-led, live training, participants will learn how to create models for processing text based data using OpenNLP. Sample training data as well customized data sets will be used as the basis for the lab exercises.
By the end of this training, participants will be able to:
- Install and configure OpenNLP
- Download existing models as well as create their own
- Train the models on various sets of sample data
- Integrate OpenNLP with existing Java applications
Audience
- Developers
- Data scientists
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
In this instructor-led, live training, participants will learn how to use OpenFace's components to create and deploy a sample facial recognition application.
By the end of this training, participants will be able to:
- Work with OpenFace's components, including dlib, OpenVC, Torch, and nn4 to implement face detection, alignment, and transformation
- Apply OpenFace to real-world applications such as surveillance, identity verification, virtual reality, gaming, and identifying repeat customers, etc.
Audience
- Developers
- Data scientists
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
This training is more focus on fundamentals, but will help you to choose the right technology : TensorFlow, Caffe, Teano, DeepDrive, Keras, etc. The examples are made in TensorFlow.
It is a broad overview of existing methods, motivations and main ideas in the context of pattern recognition.
After a short theoretical background, participants will perform simple exercise using open source (usually R) or any other popular software.
Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.
By the end of this training, participants will be able to:
- Create a mobile app capable of image processing, text analysis and speech recognition
- Access pre-trained ML models for integration into iOS apps
- Create a custom ML model
- Add Siri Voice support to iOS apps
- Understand and use frameworks such as coreML, Vision, CoreGraphics, and GamePlayKit
- Use languages and tools such as Python, Keras, Caffee, Tensorflow, sci-kit learn, libsvm, Anaconda, and Spyder
Audience
- Developers
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Format of the course
- Lecture and discussion coupled with hands-on exercises.
Audience
Data scientists and statisticians that have some familiarity with machine learning and know how to program R. The emphasis of this course is on the practical aspects of data/model preparation, execution, post hoc analysis and visualization. The purpose is to give a practical introduction to machine learning to participants interested in applying the methods at work
Sector specific examples are used to make the training relevant to the audience.
Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.
Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.
Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.
In this instructor-led, live training, participants will learn how to apply machine learning techniques and tools for solving real-world problems in the finance industry. R will be used as the programming language.
Participants first learn the key principles, then put their knowledge into practice by building their own machine learning models and using them to complete a number of team projects.
By the end of this training, participants will be able to:
- Understand the fundamental concepts in machine learning
- Learn the applications and uses of machine learning in finance
- Develop their own algorithmic trading strategy using machine learning with R
Audience
- Developers
- Data scientists
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
In this instructor-led, live training, participants will learn how to apply machine learning techniques and tools for solving real-world problems in the finance industry.
Participants first learn the key principles, then put their knowledge into practice by building their own machine learning models and using them to complete a number of team projects.
By the end of this training, participants will be able to:
- Understand the fundamental concepts in machine learning
- Learn the applications and uses of machine learning in finance
- Develop their own algorithmic trading strategy using machine learning with Python
Audience
- Developers
- Data scientists
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Target Audience
- Investors and AI entrepreneurs
- Managers and Engineers whose company is venturing into AI space
- Business Analysts & Investors
By the end of this training, participants will:
- Understand the evolution and trends for machine learning.
- Know how machine learning is being used across different industries.
- Become familiar with the tools, skills and services available to implement machine learning within an organization.
- Understand how machine learning can be used to enhance data mining and analysis.
- Learn what a data middle backend is, and how it is being used by businesses.
- Understand the role that big data and intelligent applications are playing across industries.
By the end of this training, participants will have the knowledge and practice needed to implement a live OpenNMT solution.
Source and target language samples will be pre-arranged per the audience's requirements.
Format of the Course
- Part lecture, part discussion, heavy hands-on practice
In this instructor-led, live training, participants will learn how to use PaddlePaddle to enable deep learning in their product and service applications.
By the end of this training, participants will be able to:
- Set up and configure PaddlePaddle
- Set up a Convolutional Neural Network (CNN) for image recognition and object detection
- Set up a Recurrent Neural Network (RNN) for sentiment analysis
- Set up deep learning on recommendation systems to help users find answers
- Predict click-through rates (CTR), classify large-scale image sets, perform optical character recognition(OCR), rank searches, detect computer viruses, and implement a recommendation system.
Audience
- Developers
- Data scientists
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
In this instructor-led, live training, participants will learn how to apply machine learning techniques and tools for solving real-world problems in the banking industry.
Participants first learn the key principles, then put their knowledge into practice by building their own machine learning models and using them to complete a number of team projects.
Audience
- Developers
- Data scientists
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
By the end of this training, participants will be able to:
- Install and configure TensorFlow 2.0.
- Understand the benefits of TensorFlow 2.0 over previous versions.
- Build deep learning models.
- Implement an advanced image classifier.
- Deploy a deep learning model to the cloud, mobile and IoT devices.
Word2Vec is a method of computing vector representations of words introduced by a team of researchers at Google led by Tomas Mikolov.
Audience
This course is directed at researchers, engineers and developers seeking to utilize Deeplearning4J to construct Word2Vec models.
Part-1(40%) of this training is more focus on fundamentals, but will help you choosing the right technology : TensorFlow, Caffe, Theano, DeepDrive, Keras, etc.
Part-2(20%) of this training introduces Theano - a python library that makes writing deep learning models easy.
Part-3(40%) of the training would be extensively based on Tensorflow - 2nd Generation API of Google's open source software library for Deep Learning. The examples and handson would all be made in TensorFlow.
Audience
This course is intended for engineers seeking to use TensorFlow for their Deep Learning projects
After completing this course, delegates will:
-
have a good understanding on deep neural networks(DNN), CNN and RNN
-
understand TensorFlow’s structure and deployment mechanisms
-
be able to carry out installation / production environment / architecture tasks and configuration
-
be able to assess code quality, perform debugging, monitoring
-
be able to implement advanced production like training models, building graphs and logging
SyntaxNet is a neural-network Natural Language Processing framework for TensorFlow.
Word2Vec is used for learning vector representations of words, called "word embeddings". Word2vec is a particularly computationally-efficient predictive model for learning word embeddings from raw text. It comes in two flavors, the Continuous Bag-of-Words model (CBOW) and the Skip-Gram model (Chapter 3.1 and 3.2 in Mikolov et al.).
Used in tandem, SyntaxNet and Word2Vec allows users to generate Learned Embedding models from Natural Language input.
Audience
This course is targeted at Developers and engineers who intend to work with SyntaxNet and Word2Vec models in their TensorFlow graphs.
After completing this course, delegates will:
- understand TensorFlow’s structure and deployment mechanisms
- be able to carry out installation / production environment / architecture tasks and configuration
- be able to assess code quality, perform debugging, monitoring
- be able to implement advanced production like training models, embedding terms, building graphs and logging
By the end of the training, participants will be able to:
- Train various types of neural networks on large amounts of data.
- Use TPUs to speed up the inference process by up to two orders of magnitude.
- Utilize TPUs to process intensive applications such as image search, cloud vision and photos.
In this instructor-led, live training, we cover the principles of Torch, its unique features, and how it can be applied in real-world applications. We step through numerous hands-on exercises all throughout, demonstrating and practicing the concepts learned.
By the end of the course, participants will have a thorough understanding of Torch's underlying features and capabilities as well as its role and contribution within the AI space compared to other frameworks and libraries. Participants will have also received the necessary practice to implement Torch in their own projects.
Format of the Course
- Overview of Machine and Deep Learning
- In-class coding and integration exercises
- Test questions sprinkled along the way to check understanding